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Abstract

High and low pressure zones work as natural suction
pumps for oil and gas accumulation. In order to
localize low pressures zones in sedimentary basins
for oil and gas exploration, it is necessary to know
P and S wave velocities for the medium. Also,
strictly speaking, we need to know the rock densities
for all layers, and consider that there are many
correlation tables between seismic velocities and
densities. Density is a parameter admitted to change
slowly with depth, down to the top of the target
interface.

This work deals with a theory for stress prediction
in the subsurface, and takes in consideration the
constitutive parameters (density and Lame’s), and the
geometry of the reservoir target surface. The model
does not separate the different contributions (porosity,
fluids) to rock velocities, that is controlled by the
constitutive parameters.

Introduction

The anticline structure can be a very useful trap, especially
if it has a negative discontinuity in the γ = VS

VP
ratio. In

this case, exists also an additional horizontal stretching
due to the negative curvature of the anticline structure. It
is interesting, that the effects of slope and curvature are
in opposite directions; the slopes produce an additional
compression, while the average curvature produces a
horizontal stretching.

If there is an anticline structure with a positive discontinuity
in the γ ratio, it can be a compensational effect. The
additional pressure due to the γ discontinuity, and the
additional stretching due to the average curvature may
eliminate each other. In this case, the anticline structure
is not a fluid attractor.

The present work is part of a major project under the theme
prediction of stresses and strains using P and S wave
velocities in order to localize areas of low pressure in oil
and gas productive layers as natural suction pumps. This
project is structured in different and independent parts, and
as a result the paper Sibiryakov et al. (2013) is published,
and others by Sibiryakov et al. (2014a) and Sibiryakov et
al. (2014b) have been accepted for publication.

In the present description we restrict our attention to

isotropic models. For anisotropic situations the equations
are more complicate, there are more control parameters,
and the data needs more processing. Every layer forming
the 3D geological structural model has constant elastic
parameters.

It is mandatory that the acquired data be three
components, otherwise it is necessary to apply special
processing to obtain the S wave information from P-S
phase conversion. S waves can be used from land data
obtained with horizontal vibroseis and VSP technology,
and from marine data using AVO technology looking for
converted P-S-P waves. In special cases, we can use
petrophysical measurements of borehole samples for VP
and VS and density ρ.

The first published appearances about pore space and
integral geometry were presented by Sibiryakov (2002) and
Sibiryakov and Prilous (2007). The theory of porous media
is based on integral geometry, because such mathematical
discipline deals with collective geometrical properties of
real reservoirs. It has been shown by Santalo (1953) that
such collective properties are namely for porosity, specific
surface area (SSA), average curvature and Gaussian
curvature (Smirnov, 1964). For example, cracked media
have as a rule small porosity, but very large specific surface
area, what creates anomalous high γ ratio, and it means
that the Poisson coefficient, σ = 1−2γ2

2−2γ2 , can be negative.
This discussion can be seen in Sibiryakov et al. (2013) and
Sibiryakov and Sibiryakov (2010).

Methodology

The role of slope angles and curvatures

In order to predict the stress-strain state in geological
structures we need to integrate the elastic equations of
equilibrium. The boundary conditions are for continuity
of forces and displacements. The equilibrium equations
contain the elastic parameters; that is, the VP and VS
velocities, and the rock densities.

These rock parameters and the boundary configuration
have to be obtained from the seismic processing and
imaging. It means that we need to have detailed velocity
analysis from previous investigations. As a special case is
the need for the shear wave velocity distribution.

The stresses in geological structures represent a very
complicate subject in a six dimensional space, because
there are in the usual case six components of the stress
tensor in any point of the medium.

The present work analyzes the solution of a simpler
problem: the pressure prediction in the vicinity of geologic
structural boundaries. The scalar invariant pressure is very
important, and it is the simplest characteristic of stress-
strain condition. We answer a question about the condition
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for boundary to be a fluid attractor, or the condition for a
boundary not being a fluid attractor.

To give a practical point of view, Figure 1 represents a
model for a sedimentary basin, where we aim at a reservoir
volume limited on the top by a S surface, where the layers
above it are responsible for the overload weight that causes
the stress field in the underground rocks. The stress
pattern varies according to the γ ratio, that can present
important discontinuities across the interfaces. Therefore,
the aim is the S surface where the stress discontinuity
will varie according to its topographic form, and this
effect measured by the spatial slopes and curvatures of
the reference S surface. The physical aspects of this
theory does not take geological faulting and lithological
variations in the rock volume, and only the bending of the
formations (above and below the S interface) that defines
the anticline structure. For geological representations,
special block drawings for reservoir representations are
found, for instance, in Chopra and Marfurt (2007).

Figure 1: Block perspective illustrating a sedimentary
basin. It shows the Cartesian arbitrary system (x,y,z), the
layer blocks limited by curved interfaces, a subtle reservoir
volume limited above by the S surface represented by z =
z0(x,y), and a flat free surface at z = 0.

In the usual case, a geological structure represents a
very complicate problem for the solution of the equilibrium
equations, which are given by (Novacky, 1975; Kupradze,
1963): 

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂ z
= 0

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂ z
= 0

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂ z
= ρg

(1)

where the symbology and units are: σ [N/m2] for stress,
ρ [kg/m3] for density, and g [m/s2] for gravity acceleration.
The spatial variables (x,y,z) stand for the Cartesian system
of coordinates, with z pointing positive downwards inside
the underground. Physically, the system of equations (1)
means that: (1st) the sum of the stress variation along
the vertical axis is given by the weight of the overburden
column; (2nd) the sum of the stress variation along the
horizontal x-axis is chosen to be null; and (3rd) the sum
of the stress variation along the y-axis is also chosen to
be null. The gravity acceleration, g = g(z), is considered
constant in the underground volume in consideration, and
also g = gz when it is needed a convenient notation.

The total solution of the system of equations (1), u(T) =
u(C) +u(P), is given by the complementary solution, u(C), of

the three homogeneous equations, added to the particular
solution, u(P), of the inhomogeneous system obtained via
Green’s function and convolution (Roach, 1986).

The particular solution for the displacement component
uk(x),(k = x,y,z), is given by the Poisson integral with
respect to the structural volume V as:

uk(x) = g
1

V 2
s

∫
V

Γkz(x,y)dVy. (2)

It is interesting that this integral depends mainly on the
shear velocity VS [LT−1]. Γkz(x,y) [L−1] is the Green
tensor for the system of equations (1) (fundamental
solution, where in the third equation ρg is replaced by
ρgδ (x)δ (y)δ (z)), and it is given by Kupradze (1963).

For the solution represented by equation (2), and others
in the sequel based on this formulation (see, for instance,
equation (16)), once the displacement field, uk(x), is
known, then the deformation, stress, and pressure fields
can be calculated. But, we show ahead for simple models
that the contribution of the particular solution in equation
(2) is small and, as a result, the complementary solution is
more important.

The system of equations (1) with the particular solution
in equation (2), and a possible general complementary
solution, establish a very complicate problem. To obtain a
complementary solution, u(C), is already a special problem
by itself.

However, we can obtain an elegant complementary
solution to system of equations (1) by considering a
plausible model described by simple geometric relations
for the S surface, z = z0(x,y), and by the overburden weight
components Pk = ρgznk, [N/m2], in the form: Px(S) = ρgz0(x,y)nx

Py(S) = ρgz0(x,y)ny
Pz(S) = ρgz0(x,y)

(3)

where ni = cos(n,xi) is the direction cosine between the
surface normal vector,~n, and the arbitrary (x,y,z) Cartesian
system. The stress expressions for equations (3) (defining
σ for normal and τ tangential stress components) on the
interface S are written as: Px(S) = σxxnx + τyxny + τzxnz|S = ρgz0(x,y)nx

Py(S) = σyyny + τxynx + τzynz|S = ρgz0(x,y)ny
Pz(S) = σzznz + τxznx + τyzny|S = ρgz0(x,y)

(4)

We can now consider that the rock displacements on
the boundary z = z0(x,y) to be related with the vertical
displacement by the formulas: ux = uz cos(ρg,x)

uy = uz cos(ρg,y)
cos(ρg,z) = 1

(5)

On the boundary, represented by the surface z = z0(x,y),
the vertical strain is given by the relation:

ezz =
∂uz

∂ z
=

ρgz(x,y)
λ +2µ

; (6)
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that comes from equations (1) considering a flat structure.
Under integration, equation (6) gives the displacement,

uz(z0(x,y)) =
∫ z0

0

ρgz(x,y)
λ +2µ

dz =
ρgz2

0(x,y)
2(λ +2µ)

. (7)

In the above equation, the quantities ρ and g are allowed
to varie as a function of z(x,y); but, the solution in the right
hand consider them constant within z(x,y).

The horizontal strain, exx = ∂ux
∂x = ux,x, with equation (5),

using the convenient symbology, is expressed by:

exx =
∂

∂x
uz(x,y)cos(n,x); (8)

with the result under derivation by parts,

exx = uz,x
z0,x√

1+ z2
0,x + z2

0,y

−uz
z0,xx√

1+ z2
0,x + z2

0,y

(
1−

z2
0,x

1+ z2
0,x + z2

0,y

)
.

(9)
For the above equation (9),

uz,x(x,y) =
ρg

λ +2µ
z0(x,y)

∂ z0(x,y)
∂x

. (10)

The total dilatation (θ = O ·~u) (vertical compression and
horizontal decompression) on the boundary z = z0(x,y)
takes the result:

θ(z0(x,y)) =
gz0

V 2
P

1+
z2

0,x + z2
0,y√

1+ z2
0,x + z2

0,y


−

gz2
0

2V 2
P

[
z0,xxϕ1(x,y)+ z0,yyϕ2(x,y)

] (11)

where, 
ϕ1(x,y) =

1+ z2
0,y(

1+ z2
0,x + z2

0,y

)3/2

ϕ2(x,y) =
1+ z2

0,x(
1+ z2

0,x + z2
0,y

)3/2

(12)

The quantity named Pressure P is defined as the average
of the normal stresses; that is:

P =
1
3
(σxx +σyy +σzz); (13)

and it is the first invariant of the stress tensor. Using the
generalized Hooke’s law for isotropic medium:

σi j = λθδi j +2µei j; (14)

the pressure in equation (13) is now directly related to the
dilatation, and we specify it in the form,

Pθ = (λ +
2
3

µ)θ = Kθ , (15)

where K = λ + 2
3 µ stands for the pressure module.

Some observations about the dilatation equation (11) are
now important.

First, that equation (11) depends on VP, and on the first and
second order space derivatives of the surface z = z0(x,y).
The first derivative terms,

[
z0,x(x,y),z0,y(x,y)

]
, are slope

angles. The second derivative terms,
[
z0,xx(x,y),z0,yy(x,y)

]
,

relate to the surface general curvature (Smirnov, 1964).

Second, in the case that the P wave velocity does not
change across the boundary (this is very rare situation),
the dilatation has a continuous value. But, in the usual
case the P wave has a discontinuity across the boundary
and, as given above, the pressure is given by the product
of pressure module (K) to the dilatation (θ ), that can also
change across the boundary (Sibiriakov et al., 2004).

Third, the first term of the equation (11) contains the square
of the first derivative, which means that, for not very large
angles, the slope effect results in the increase of pressure
due to the structure. However, the curvature effect is more
interesting.

Fourth, for negative curvature (anticline structure) there is
a decrease in pressure, and this effect increases with depth
due to the z2

0(x,y) factor in the second term of equation (11),
instead of in the first term where there is the factor z0(x,y).

Fifth, and continuing, the sign of the second derivative is
negative, and the curvature is also of a negative value. This
means, the anticline structure produces a low pressure
zone, which is a favorable condition for fluid accumulation.
For positive curvature (sincline structure), we have the
opposite effect.

Sixth, consider the ideal case of a spherical arc; then,
the value of the second term in equation (11) may have
the value of the first term. This means that the negative
curvature produces a planar stretching near the top, and
shortening near the rim.

Seventh, the first term in equation (11) is related to the
slope angles, with a positive contribution to the dilatation.
This means that this term produces an increase in
compression as a function of the increase in the amplitude
of the anticline structure.

The question that we raise now is: When is it possible
that the simple representations in equation (5) is sufficiently
accurate to diminish the pressure field in the vicinity of the
anticline dome?

It should also be clear that the contributions of the Poisson
integral in equation (2) to the displacement and stress fields
are small, in comparison to the fields due to elementary
geometrical and physical properties of structures (tangent
and vertical forces, and displacements along the structure
boundary).

Contribution of the Poisson Integral to Displacements

We can represent the contribution of the Poisson integral
equation (2) to the displacement field as the difference of
two integrals in the form:

∆uk(x) = g

(
1

V (+)2
S

− 1

V (−)2
S

)∫
V

Γkz(x,y)dVy, (16)

where V (+)
S (above) and V (−)

S (below) are seismic wave
velocities across the structure S boundary. The integrand
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is the Green tensor given by:

Γkz(x,y) =
1

8π

[
(1+ γ

2)δkz +(1− γ
2)
(xk−yk)(z− z′)

r2(x,y)

]
1

r(x,y)
, (17)

where y = (x′,y′,z′) is the integration variable throughout
the volume V . The two integrals in equation (16) are
interpreted as material substitution: the first integral relates
to the material which is eliminated from the structure, and
the second to the material which is occupied by the real
structure. Figure 2 illustrates the coordinate system, the
geometry of the reservoir volume V , the integration variable
y in the volume V , and the reference point x along the S
surface.

Figure 2: Block diagram representing a reservoir volume V
limited above by the surface S represented by z = z0(x,y).
The integration variable y and the S surface reference point
x are also shown.

The quantity r is the geometrical distance between the x
and y points. The contribution in equation (16) vanishes
if the velocities V (+)

S and V (−)
S are equal. On the other

hand, the displacement field due to the elementary method
expressed by equations (6) and (7) is given by:

u0
z =

ρgz2
0

2(λ +2µ)
=

gz2
0

2V 2
P
. (18)

Let us consider a simple but important structure model
represented by a spherical body characterized by the
volume V = πR2h, where R is the average radius of the
structure, and h is the amplitude. The result for the
integral in equation (16) gives a simple and good numerical
condition for an estimation method (formulas of the type in
equation (11)), that is given by:

Rh
8

∆VS

VS
� 4γ

2z2
0; (19)

where ∆VS = V (+)
S −V (−)

S . Considering that the γ ratio be
about γ2 ≈ 0.25, then the numerical condition in equation
(19) simplifies to:

h
R

∆VS

VS
� 8

( z0

R

)2
. (20)

This interesting result says that for small value of h with
respect to R, the equation (20) is true, specially for large z0,
and it establishes that a spherical segment represents well
an anticline structure.

Results

Figure 3 shows the case of an anticline structure modeled
by a Gaussian surface defined by:

z0(x,y) = H−he−(
x2+y2

a2 ), (21)

where H is the depth to the rim of the structure, a the
average radius, and h is the amplitude of the Gaussian
dome.

For calculating the pressure across the model surface, the
parameters for the two media are defined as: VP above
is 3000 m/s, and 3200 m/s below; γ = VS/VP above is 0.5,
and 0.577 below; the density is ρ = 3000 kg/m3 above and
below; and the gravity value was taken as g = 9.8 m/s2.
The figures that follow are the results obtained with these
parameter values.

Figure 3: Topography of the anticline model according to
equation (21) representing the S surface separating the two
media. The vertical axis indicates the surface position and
amplitude z0(x,y) for h = 10, H = 3000, and a = 1000.

Figure 4 shows the elementary overburden pressure field
P0 = Pz(S) = ρgz0 behavior above the S surface, and with a
consistent low around the dome.

Figure 4: Normal overburden weight as pressure P0
according to equation (3).

Figure 5 shows the overburden weight pressure
discontinuity ∆P0 = 4

3 P0(γ
2
1 − γ2

2 ) form across the S
surface, and with a consistent low around the dome as
expected for the given parameters.

Figure 6 shows the cubic dilatation θ calculated with
equation (11), where the red color is for the medium above,
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Figure 5: Normal overburden weight as pressure
discontinuity ∆P0 across the S surface, and consistent with
the results of Figure 4.

and the green color for the medium below the S surface.
The figure shows a consistent form for the dilatation with
respect to the specified model.

Figure 6: Cubic dilatation θ according to equation (11). The
values in green are for the layer below the S surface, and in
blue for the layer above S.

Figure 7 shows the distribution of the dilatation pressure
Pθ , where is clear a low area around and under the dome.
This distribution is calculated by Pθ = (λ + 2

3 µ)θ = Pθ (z0)
using equation (11) referenced to the S surface z0(x,y).
The pressure immediately above the S surface (blue color)
is given by P(+)

θ
= Pθ − 1

2 ∆Pθ , and immediately below (red

color) by P(−)
θ

= Pθ + 1
2 ∆Pθ .

The pressure unit used is N/m2 = 1Pascal (Pa), which is
equivalent to 1Pa = 9.8692×10−6atm (atmosphere).

It is interesting to observe that the pressure below the S
surface (blue color) is sufficiently less than the pressure
above (red color) by about 1.0× 107[N/m2] (about 200
atmospheres). The main role in pressure decrease is
played by the negative curvature of the anticline arc, and
by the negative discontinuity of the γ parameter. This
structure acts as a fluid attractor. Besides, we can see a
pressure increase near the periphery of the structure, and
this means that around the periphery of an anticline there
is a border for fluid migration to below, or to above, the
anticline S surface.

Figure 8 shows the pressure discontinuity ∆Pθ across the
S surface, where is clear a low pressure area around
and under the dome. This is a convenient figure to see
the subtlety and details for the analysis of fluid migration
around the dome and rim of the structure.

Figure 7: This structure is a fluid attractor. Result for the
dilatation pressure Pθ using equation (11) and θ as shown
in Figure 6. The blue color is for the medium above, and
the red color is for the medium below the S surface.

Fluids should migrate from a high to low pressure zone, but
we still have to consider the petroleum geology principles
to form a complete analysis of the migration process as,
for instance, the source and sealing rocks, and structural
attitudes.

Figure 8: Result for the dilatation pressure discontinuity
∆Pθ = K1θ1−K2θ2 using the results in Figure 7 to analyze
the details of the pressure variation around the dome and
rim.

Figure 9 shows the difference between the pressure
discontinuities as calculated by the two related models:
overburden minus dilatation pressures, and given by
∆P0θ = ∆P0−∆Pθ , using results as shown in Figures 5 and
8. The rim area shows the expected value around zero,
and the dome presents a discrepancy between these two
models, but by only around 0.1 atm, what represents a
good approximation considering a discontinuity of 200 atm
for ∆P0 and ∆Pθ .

For the case of Figure 10, we inverted the physical
conditions through the parameters of the anticline; that is,
γ = 0.577 above, and γ = 0.5 below the S surface. The result
gives another picture, as the inverse of the Figure 7; that
is, the pressure below the S surface is larger than above by
about 1.0× 107[N/m2] (about 200 atmospheres), and the
vicinity of the structure is not a fluid attractor.

Conclusions

Zones of low pressure exist not only in anticline structures;
but, they can also be present in horizontal layers if the γ

ratio is smaller in the layer above than in the layer below
with respect to the structure surface. The search for such
zones requires the knowledge of both P and S seismic
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Figure 9: Difference between the overburden and the
dilatation pressure discontinuities ∆P0θ = ∆P0−∆Pθ using
the results as shown in Figures 5 and 8.

Figure 10: This structure is not a fluid attractor. The
parameters have the inverse values of the ones for the case
of Figure 7: blue for γ = 0.5 below, and red for γ = 0.577
above the S surface.

velocity distributions, which can be determined by seismic
processing, VSP and laboratory measurements.

The local decrease of pressure near the dome of an
anticline structure depends on the discontinuity of the
physical parameters across the structural surface, and on
the geometrical parameters (slope angle and curvature).
The quantity physically affected is the stress field, and the
constitutive parameters (density, Lame’s, and if needed the
porosity, specific surface area, etc) are admitted constant
for the volume rock under the static condition. The volume
rocks that form the anticline extend laterally to a horizontal
attitude with the same constitutive parameter values.

The negative discontinuity of pressure causes the
decrease of pressure below the structure surface, which
turns it an attractor for fluid accumulation.

The positive discontinuity of pressure causes an increase
of pressure below the structure surface, and as a result this
structure is not an attractor feature for fluid accumulation.

The role of structural curvature is to increase its effect on
the pressure value as a function of depth of the structure;
that means, as the depth increases the role of the curvature
also increases.
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